Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Solution-processable semiconductors hold promise in enabling applications requiring cost-effective electronics at scale but suffer from low performance limited by defects. We show that ordered defect compound semiconductor CuIn5Se8, which forms regular defect complexes with defect-pair compensation, can simultaneously achieve high performance and solution processability. CuIn5Se8transistors exhibit defect-tolerant, band-like transport supplying an output current above 35 microamperes per micrometer, with a large on/off ratio greater than 106, a small subthreshold swing of 189 ± 21 millivolts per decade, and a high field-effect mobility of 58 ± 10 square centimeters per volt per second, with excellent uniformity and stability, superior to devices built on its less defective parent compound CuInSe2, analogous binary compound In2Se3, and other solution-deposited semiconductors. They can be monolithically integrated with carbon nanotube transistors to form high-speed and low-voltage three-dimensional complementary logic circuits and with micro-light-emitting diodes to realize high-resolution displays.more » « less
- 
            AbstractQuantum information processing and quantum sensing is a central topic for researchers who are part of the Materials Research Society and the Quantum Staging Group is providing leadership and guidance in this context. We convened a workshop before the 2022 MRS Spring Meeting and covered four topics to explore challenges that need to be addressed to further promote and accelerate the development of materials with applications in quantum technologies. This article captures the discussions at this workshop and refers to the pertinent literature. Graphical abstractmore » « less
- 
            Abstract The extreme sensitivity of 2D materials to defects and nanostructure requires precise imaging techniques to verify presence of desirable and absence of undesirable features in the atomic geometry. Helium-ion beams have emerged as a promising materials imaging tool, achieving up to 20 times higher resolution and 10 times larger depth-of-field than conventional or environmental scanning electron microscopes. Here, we offer first-principles theoretical insights to advance ion-beam imaging of atomically thin materials by performing real-time time-dependent density functional theory simulations of single impacts of 10–200 keV light ions in free-standing graphene. We predict that detecting electrons emitted from the back of the material (the side from which the ion exits) would result in up to three times higher signal and up to five times higher contrast images, making 2D materials especially compelling targets for ion-beam microscopy. This predicted superiority of exit-side emission likely arises from anisotropic kinetic emission. The charge induced in the graphene equilibrates on a sub-fs time scale, leading to only slight disturbances in the carbon lattice that are unlikely to damage the atomic structure for any of the beam parameters investigated here.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
